Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
2.
Infect Agent Cancer ; 16(1): 62, 2021 Oct 30.
Article in English | MEDLINE | ID: covidwho-1631379

ABSTRACT

SARS-CoV-2 infection can impact the physical, cognitive, mental health of patients, especially in those recovered in intensive care units. Moreover, it was proved that the effects of the virus may persist for weeks or months. The term long-COVID or post-COVID syndrome is commonly used for indicating a variety of physical and psychological symptoms that continue after the resolution of the acute phase. This narrative review is aimed at providing an updated overview of the impact of physical, cognitive, and psychological health disorders in COVID-19 survivors, by summarizing the data already published in literature in the last year. Studies cited were found through PubMed searches. We also presented an overview of the post-COVID-19 health consequences on three important aspects: nutritional status, neurological disorders, and physical health. Moreover, to activate a correct health planning policy, a multidisciplinary approach for addressing the post- COVID-19 issue, has been proposed. Finally, the involvement of health professionals is necessary even after the pandemic, to reduce expected post-pandemic psychosocial responses and mental health disorders.

3.
J Transl Med ; 18(1): 405, 2020 10 21.
Article in English | MEDLINE | ID: covidwho-1477432

ABSTRACT

BACKGROUND: Tocilizumab blocks pro-inflammatory activity of interleukin-6 (IL-6), involved in pathogenesis of pneumonia the most frequent cause of death in COVID-19 patients. METHODS: A multicenter, single-arm, hypothesis-driven trial was planned, according to a phase 2 design, to study the effect of tocilizumab on lethality rates at 14 and 30 days (co-primary endpoints, a priori expected rates being 20 and 35%, respectively). A further prospective cohort of patients, consecutively enrolled after the first cohort was accomplished, was used as a secondary validation dataset. The two cohorts were evaluated jointly in an exploratory multivariable logistic regression model to assess prognostic variables on survival. RESULTS: In the primary intention-to-treat (ITT) phase 2 population, 180/301 (59.8%) subjects received tocilizumab, and 67 deaths were observed overall. Lethality rates were equal to 18.4% (97.5% CI: 13.6-24.0, P = 0.52) and 22.4% (97.5% CI: 17.2-28.3, P < 0.001) at 14 and 30 days, respectively. Lethality rates were lower in the validation dataset, that included 920 patients. No signal of specific drug toxicity was reported. In the exploratory multivariable logistic regression analysis, older age and lower PaO2/FiO2 ratio negatively affected survival, while the concurrent use of steroids was associated with greater survival. A statistically significant interaction was found between tocilizumab and respiratory support, suggesting that tocilizumab might be more effective in patients not requiring mechanical respiratory support at baseline. CONCLUSIONS: Tocilizumab reduced lethality rate at 30 days compared with null hypothesis, without significant toxicity. Possibly, this effect could be limited to patients not requiring mechanical respiratory support at baseline. Registration EudraCT (2020-001110-38); clinicaltrials.gov (NCT04317092).


Subject(s)
Antibodies, Monoclonal, Humanized/therapeutic use , Betacoronavirus/drug effects , Coronavirus Infections/drug therapy , Pneumonia, Viral/drug therapy , Adult , Aged , Aged, 80 and over , Betacoronavirus/immunology , COVID-19 , Cohort Studies , Coronavirus Infections/epidemiology , Female , Humans , Italy/epidemiology , Male , Middle Aged , Mortality , Off-Label Use , Pandemics , Pneumonia, Viral/epidemiology , SARS-CoV-2 , Treatment Outcome , Validation Studies as Topic
4.
Biology (Basel) ; 10(8)2021 Aug 01.
Article in English | MEDLINE | ID: covidwho-1376731

ABSTRACT

In December 2019, a novel coronavirus, "SARS-CoV-2", was recognized as the cause of coronavirus disease 2019 (COVID-19). Several studies have explored the changes and the role of inflammatory cells and cytokines in the immunopathogenesis of the disease, but until today, the results have been controversial. Based on these premises, we conducted a retrospective assessment of monocyte intracellular TNF-α expression (iTNF-α) and on the frequencies of lymphocyte sub-populations in twenty-five patients with moderate/severe COVID-19. We found lymphopenia in all COVID-19 infected subjects compared to healthy subjects. On initial observation, in patients with favorable outcomes, we detected a high absolute eosinophil count and a high CD4+/CD8+ T lymphocytes ratio, while in the Exitus Group, we observed high neutrophil and CD8+ T lymphocyte counts. During infection, in patients with favorable outcomes, we observed a rise in the lymphocyte count, in the monocyte and in Treg lymphocyte counts, and in the CD4+ and in CD8+ T lymphocytes count but a reduction in the CD4+/CD8+ T lymphocyte ratio. Instead, in the Exitus Group, we observed a reduction in the Treg lymphocyte counts and a decrease in iTNF-α expression. Our preliminary findings point to a modulation of the different cellular mediators of the immune system, which probably play a key role in the outcomes of COVID-19.

5.
Front Immunol ; 12: 734689, 2021.
Article in English | MEDLINE | ID: covidwho-1354868

ABSTRACT

The response to anti-SARS-Cov-2 preventive vaccine shows high interpersonal variability at short and medium term. One of the explanations might be the individual HLA allelic variants. Indeed, B cell response is stimulated and sustained by CD4+ T helper cells activated by antigens presented by HLA-class II alleles on antigen-presenting cells (APCs). The impact of the number of antigens binding to HLA class-II alleles on the antibody response to the COVID vaccine has been assessed in a cohort of 56 healthcare workers who received the full schedule of the Pfizer-BioNTech BNT162b2 vaccine. Such vaccine is based on the entire spike protein of the SARS-CoV-2. Ab titers have been evaluated 2 weeks after the first dose as well as 2 weeks and 4 months after the boosting dose. HLA-DRB1 and DBQ1 for each of the vaccinees have been assessed, and strong binders have been predicted. The analysis showed no significant correlation between the short-medium-term Ab titers and the number of strong binders (SB) for each individual. These results indicate that levels of Ab response to the spike glycoprotein is not dependent on HLA class II allele, suggesting an equivalent efficacy at global level of the currently used vaccines. Furthermore, the pattern of persistence in Ab titer does not correlate with specific alleles or with the number of SBs.


Subject(s)
Antibodies, Viral/blood , COVID-19 Vaccines/immunology , HLA-D Antigens/immunology , SARS-CoV-2/immunology , Antibodies, Viral/immunology , Antibody Affinity/immunology , Antigens, Viral/immunology , BNT162 Vaccine , COVID-19/prevention & control , Humans , Spike Glycoprotein, Coronavirus/immunology
6.
J Transl Med ; 19(1): 246, 2021 06 05.
Article in English | MEDLINE | ID: covidwho-1259200

ABSTRACT

BACKGROUND: Since the first complete genome sequencing of SARS-CoV-2 in December 2019, more than 550,000 genomes have been submitted into the GISAID database. Sequencing of the SARS-CoV-2 genome might allow identification of variants with increased contagiousness, different clinical patterns and/or different response to vaccines. A highly automated next generation sequencing (NGS)-based method might facilitate an active genomic surveillance of the virus. METHODS: RNA was extracted from 27 nasopharyngeal swabs obtained from citizens of the Italian Campania region in March-April 2020 who tested positive for SARS-CoV-2. Following viral RNA quantification, sequencing was performed using the Ion AmpliSeq SARS-CoV-2 Research Panel on the Genexus Integrated Sequencer, an automated technology for library preparation and sequencing. The SARS-CoV-2 complete genomes were built using the pipeline SARS-CoV-2 RECoVERY (REconstruction of COronaVirus gEnomes & Rapid analYsis) and analysed by IQ-TREE software. RESULTS: The complete genome (100%) of SARS-CoV-2 was successfully obtained for 21/27 samples. In particular, the complete genome was fully sequenced for all 15 samples with high viral titer (> 200 copies/µl), for the two samples with a viral genome copy number < 200 but greater than 20, and for 4/10 samples with a viral load < 20 viral copies. The complete genome sequences classified into the B.1 and B.1.1 SARS-CoV-2 lineages. In comparison to the reference strain Wuhan-Hu-1, 48 total nucleotide variants were observed with 26 non-synonymous substitutions, 18 synonymous and 4 reported in untranslated regions (UTRs). Ten of the 26 non-synonymous variants were observed in ORF1ab, 7 in S, 1 in ORF3a, 2 in M and 6 in N genes. CONCLUSIONS: The Genexus system resulted successful for SARS-CoV-2 complete genome sequencing, also in cases with low viral copies. The use of this highly automated system might facilitate the standardization of SARS-CoV-2 sequencing protocols and make faster the identification of novel variants during the pandemic.


Subject(s)
COVID-19 , SARS-CoV-2 , High-Throughput Nucleotide Sequencing , Humans , Italy , Whole Genome Sequencing
7.
Infect Agent Cancer ; 16(1): 32, 2021 May 12.
Article in English | MEDLINE | ID: covidwho-1225779

ABSTRACT

BACKGROUND: Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection and the resulting disease, coronavirus disease 2019 (COVID-19), have spread to millions of people globally, requiring the development of billions of different vaccine doses. The SARS-CoV-2 spike mRNA vaccine (named BNT162b2/Pfizer), authorized by the FDA, has shown high efficacy in preventing SARS-CoV-2 infection after administration of two doses in individuals 16 years of age and older. In the present study, we retrospectively evaluated the differences in the SARS-CoV-2 humoral immune response after vaccine administration in the two different cohorts of workers at the INT - IRCCS "Fondazione Pascale" Cancer Center (Naples, Italy): previously infected to SARS-CoV-2 subjects and not infected to SARS-CoV-2 subjects. METHODS: We determined specific anti-RBD (receptor-binding domain) titers against trimeric spike glycoprotein (S) of SARS-CoV-2 by Roche Elecsys Anti-SARS-CoV-2 S immunoassay in serum samples of 35 healthcare workers with a previous documented history of SARS-CoV-2 infection and 158 healthcare workers without, after 1 and 2 doses of vaccine, respectively. Moreover, geometric mean titers and relative fold changes (FC) were calculated. RESULTS: Both previously infected and not infected to SARS-CoV-2 subjects developed significant immune responses to SARS-CoV-2 after the administration of 1 and 2 doses of vaccine, respectively. Anti-S antibody responses to the first dose of vaccine were significantly higher in previously SARS-CoV-2-infected subjects in comparison to titers of not infected subjects after the first as well as the second dose of vaccine. Fold changes for subjects previously infected to SARS-CoV-2 was very modest, given the high basal antibody titer, as well as the upper limit of 2500.0 BAU/mL imposed by the Roche methods. Conversely, for naïve subjects, mean fold change following the first dose was low ([Formula: see text] =1.6), reaching 3.8 FC in 72 subjects (45.6%) following the second dose. CONCLUSIONS: The results showed that, as early as the first dose, SARS-CoV-2-infected individuals developed a remarkable and statistically significant immune response in comparison to those who did not contract the virus previously, suggesting the possibility of administering only one dose in previously SARS-CoV-2-infected subjects. FC for previously infected subjects should not be taken into account for the generally high pre-vaccination values. Conversely, FC for not infected subjects, after the second dose, were = 3.8 in > 45.0% of vaccinees, and ≤ 3.1 in 19.0%, the latter showing a potential susceptibility to further SARS-CoV-2 infection.

9.
J Transl Med ; 19(1): 132, 2021 03 31.
Article in English | MEDLINE | ID: covidwho-1166915

ABSTRACT

Coronavirus disease 2019 (COVID-19) global pandemic has created unique challenges to healthcare systems throughout the world. Ensuring subjects' safety is mandatory especially in oncology, in consideration of cancer patients' particular frailty. We examined the proportion of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) IgM and/or IgG positive subjects in three different groups from Istituto Nazionale Tumori - IRCCS "Fondazione G. Pascale" in Naples (Campania region, Italy): cancer patients treated with Innovative Immunotherapy (Immune Checkpoint Inhibitors, ICIs), cancer patients undergoing standard Chemotherapies (CHTs) and healthcare providers. 9 out of 287 (3.1%) ICIs patients resulted positive, with a significant lower percentage in respect to CHTs patients (39 positive subjects out of 598, 6.5%) (p = 0.04). There was no statistically significant difference between ICIs cohort and healthcare providers, 48 out of 1050 resulting positive (4.6%). Performing a Propensity Score Matching based on gender and tumor stage, the effect of treatment on seropositivity was analyzed through a regression logistic model and the ICIs treatment resulted to be the only protective factor significantly (p = 0.03) associated with positivity (odds ratio-OR: 0.41; 95% confidence interval-CI 0.18-0.91). According to these preliminary data, ICIs would appear to be a protective factor against the onset of COVID-19 infection.


Subject(s)
COVID-19/prevention & control , Immune Checkpoint Inhibitors/therapeutic use , Immunotherapy , Neoplasms/therapy , SARS-CoV-2 , Aged , Antibodies, Viral/blood , Antineoplastic Agents/therapeutic use , COVID-19/epidemiology , COVID-19/immunology , Female , Humans , Immunoglobulin G/blood , Immunoglobulin M/blood , Italy/epidemiology , Logistic Models , Male , Middle Aged , Neoplasms/complications , Neoplasms/immunology , Pandemics , Retrospective Studies , SARS-CoV-2/immunology , Translational Research, Biomedical
11.
J Transl Med ; 18(1): 488, 2020 12 21.
Article in English | MEDLINE | ID: covidwho-992499

ABSTRACT

BACKGROUND: The easy access to a quick diagnosis of coronavirus disease 2019 (COVID-19) is a key point to improve the management of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and to contain its spread. Up to now, laboratory real-time PCR is the standard of care, but requires a fully equipped laboratory and significant infrastructure. Consequently, new diagnostic tools are required. METHODS: In the present work, the diagnostic accuracy of the point-of-care rapid test "bKIT Virus Finder COVID-19" (Hyris Ltd) is evaluated by a retrospective and a prospective analysis on SARS CoV-2 samples previously assessed with an FDA "authorized for the emergency use-EUA" reference method. Descriptive statistics were used for the present study. RESULTS: Results obtained with the Hyris Kit are the same as that of standard laboratory-based real time PCR methods for all the analyzed samples. In addition, the Hyris Kit provides the test results in less than 2 h, a significantly shorter time compared to the reference methods, without the need of a fully equipped laboratory. CONCLUSIONS: To conclude, the Hyris kit represents a promising tool to improve the health surveillance and to increase the capacity of SARS-CoV-2 testing.


Subject(s)
COVID-19 Nucleic Acid Testing/methods , COVID-19/diagnosis , Point-of-Care Systems , COVID-19/epidemiology , COVID-19/virology , COVID-19 Nucleic Acid Testing/standards , COVID-19 Nucleic Acid Testing/statistics & numerical data , Early Diagnosis , Humans , Italy/epidemiology , Limit of Detection , Pandemics , Point-of-Care Systems/standards , Point-of-Care Systems/statistics & numerical data , Prospective Studies , Reference Standards , Retrospective Studies , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , Sensitivity and Specificity , Translational Research, Biomedical
12.
Infect Agent Cancer ; 15(1): 69, 2020 Nov 23.
Article in English | MEDLINE | ID: covidwho-965787

ABSTRACT

COVID-19 pandemic following the outbreak in China and Western Europe, where it finally lost the momentum, is now devastating North and South America. It has not been identified the reason and the molecular mechanisms of the two different patterns of the pulmonary host responses to the virus from a minimal disease in young subjects to a severe distress syndrome (ARDS) in older subjects, particularly those with previous chronic diseases (including diabetes) and cancer. The Management of the Istituto Nazionale Tumori - IRCCS "Fondazione Pascale" in Naples (INT-Pascale), along with all Health professionals decided not to interrupt the treatment of those hospitalized and to continue, even if after a careful triage in order not to allow SARS-CoV-2 positive subjects to access, to take care of cancer patients with serious conditions. Although very few (n = 3) patients developed a symptomatic COVID-19 and required the transfer to a COVID-19 area of the Institute, no patients died during the hospitalization and completed their oncology treatment. Besides monitoring of the patients, all employees of the Institute (physicians, nurses, researchers, lawyers, accountants, gatekeepers, guardians, janitors) have been tested for a possible exposure. Personnel identified as positive, has been promptly subjected to home quarantine and subdued to health surveillance. One severe case of respiratory distress has been reported in a positive employees and one death of a family member. Further steps to home monitoring of COVID-19 clinical course have been taken with the development of remote Wi-Fi connected digital devices for the detection of early signs of respiratory distress, including heart rate and oxygen saturation.In conclusion cancer care has been performed and continued safely also during COVID-19 pandemic and further remote home strategies are in progress to ensure the appropriate monitoring of cancer patients.

13.
Cancers (Basel) ; 12(11)2020 Nov 10.
Article in English | MEDLINE | ID: covidwho-918179

ABSTRACT

The coronavirus disease-2019 (COVID-19) is a highly transmissible viral illness caused by SARS-CoV-2, which has been defined by the World Health Organization as a pandemic, considering its remarkable transmission speed worldwide. SARS-CoV-2 interacts with angiotensin-converting enzyme 2 and TMPRSS2, which is a serine protease both expressed in lungs, the gastro-intestinal tract, and cardiac myocytes. Patients with COVID-19 experienced adverse cardiac events (hypertension, venous thromboembolism, arrhythmia, myocardial injury, fulminant myocarditis), and patients with previous cardiovascular disease have a higher risk of death. Cancer patients are extremely vulnerable with a high risk of viral infection and more negative prognosis than healthy people, and the magnitude of effects depends on the type of cancer, recent chemotherapy, radiotherapy, or surgery and other concomitant comorbidities (diabetes, cardiovascular diseases, metabolic syndrome). Patients with active cancer or those treated with cardiotoxic therapies may have heart damages exacerbated by SARS-CoV-2 infection than non-cancer patients. We highlight the cardiovascular side effects of COVID-19 focusing on the main outcomes in cancer patients in updated perspective and retrospective studies. We focus on the main cardio-metabolic risk factors in non-cancer and cancer patients and provide recommendations aimed to reduce cardiovascular events, morbidity, and mortality.

14.
Front Immunol ; 11: 588724, 2020.
Article in English | MEDLINE | ID: covidwho-886170

ABSTRACT

SARS-CoV-2 infection is a new threat to global public health in the 21st century (2020), which has now rapidly spread around the globe causing severe pneumonia often linked to Acute Respiratory Distress Syndrome (ARDS) and hyperinflammatory syndrome. SARS-CoV-2 is highly contagious through saliva droplets. The structural analysis suggests that the virus enters human cells through the ligation of the spike protein to angiotensin-converting enzyme 2 (ACE2). The progression of Covid-19 has been divided into three main stages: stage I-viral response, stage II-pulmonary phase, and stage III-hyperinflammation phase. Once the patients enter stage III, it will likely need ventilation and it becomes difficult to manage. Thus, it will be of paramount importance to find therapies to prevent or slow down the progression of the disease toward stage III. The key event leading to hyperinflammation seems to be the activation of Th-17 immunity response and Cytokine storm. B2-adrenergic receptors (B2ARs) are expressed on airways and on all the immune cells such as macrophages, dendritic cells, B and T lymphocytes. Blocking (B2AR) has been proven, also in clinical settings, to reduce Th-17 response and negatively modulate inflammatory cytokines including IL-6 while increasing IFNγ. Non-selective beta-blockers are currently used to treat several diseases and have been proven to reduce stress-induced inflammation and reduce anxiety. For these reasons, we speculate that targeting B2AR in the early phase of Covid-19 might be beneficial to prevent hyperinflammation.


Subject(s)
Adrenergic beta-2 Receptor Antagonists/therapeutic use , Coronavirus Infections/drug therapy , Coronavirus Infections/pathology , Cytokine Release Syndrome/drug therapy , Pneumonia, Viral/drug therapy , Pneumonia, Viral/pathology , Receptors, Adrenergic, beta-2/drug effects , Respiratory Distress Syndrome/drug therapy , Betacoronavirus/drug effects , COVID-19 , Cytokine Release Syndrome/pathology , Humans , Inflammation/drug therapy , Inflammation/immunology , Inflammation/pathology , Neoplasms/drug therapy , Neoplasms/pathology , Pandemics , Respiratory Distress Syndrome/pathology , Respiratory Distress Syndrome/virology , SARS-CoV-2 , Th17 Cells/immunology
15.
Contemp Clin Trials ; 98: 106165, 2020 11.
Article in English | MEDLINE | ID: covidwho-816323

ABSTRACT

BACKGROUND: Pneumonia is the most frequent complication of COVID-19, due to an aberrant host immune response that is associated with an acute respiratory distress syndrome, and, in most critical patients, with a "cytokine storm". IL-6 might play a key role in the cytokine storm and might be a potential target to treat severe and critical COVID-19. Tocilizumab is a recombinant humanized monoclonal antibody, directed against IL-6 receptor. METHODS: This multicentre study project includes a single-arm phase 2 study and a further parallel cohort, enrolling hospitalized patients with COVID-19 pneumonia and oxygen saturation at rest in ambient air ≤93% or requiring respiratory support. Patients receive tocilizumab 8 mg/kg (up to 800 mg) as one intravenous administration. A second administration (same dose) after 12 h is optional. Two-week and one-month lethality rates are the co-primary endpoints. Sample size planned for the phase 2 study is 330 patients. The parallel cohort will include patients who cannot enter the phase 2 study because being intubated from more than 24 h, or having already received tocilizumab, or the phase 2 study has reached sample size. Primary analysis will include patients enrolled in the phase 2 study. Results of the primary analysis will be validated in the prospective cohort of patients consecutively registered after phase 2 closure from March 20 to March 24, who were potentially eligible for the phase 2 study. CONCLUSION: This trial aims to verify the safety and efficacy of tocilizumab in the Italian population with COVID-19 pneumonia and respiratory impairment. EudraCT Number: 2020-001110-38; Clinicaltrials.gov ID NCT04317092.


Subject(s)
Antibodies, Monoclonal, Humanized , COVID-19 , Cytokine Release Syndrome , Pneumonia, Viral , Receptors, Interleukin-6/antagonists & inhibitors , Administration, Intravenous , Adult , Antibodies, Monoclonal, Humanized/administration & dosage , Antibodies, Monoclonal, Humanized/adverse effects , COVID-19/complications , COVID-19/immunology , COVID-19/physiopathology , COVID-19/therapy , Clinical Trials, Phase II as Topic , Cytokine Release Syndrome/drug therapy , Cytokine Release Syndrome/etiology , Cytokine Release Syndrome/immunology , Drug Administration Schedule , Drug Monitoring , Female , Humans , Immunologic Factors/administration & dosage , Immunologic Factors/adverse effects , Male , Multicenter Studies as Topic , Pneumonia, Viral/drug therapy , Pneumonia, Viral/etiology , Treatment Outcome
16.
Front Immunol ; 11: 2094, 2020.
Article in English | MEDLINE | ID: covidwho-789288

ABSTRACT

The spread of the novel human respiratory coronavirus (SARS-CoV-2) is a global public health emergency. There is no known successful treatment as of this time, and there is a need for medical options to mitigate this current epidemic. SARS-CoV-2 uses the angiotensin-converting enzyme 2 (ACE2) receptor and is primarily trophic for the lower and upper respiratory tract. A number of current studies on COVID-19 have demonstrated the substantial increase in pro-inflammatory factors in the lungs during infection. The virus is also documented in the central nervous system and, particularly in the brainstem, which plays a key role in respiratory and cardiovascular function. Currently, there are few antiviral approaches, and several alternative drugs are under investigation. Two of these are Idelalisib and Ebastine, already proposed as preventive strategies in airways and allergic diseases. The interesting and evolving potential of phosphoinositide 3-kinase δ (PI3Kδ) inhibitors, together with Ebastine, lies in their ability to suppress the release of pro-inflammatory cytokines, such as IL-1ß, IL-8, IL-6, and TNF-α, by T cells. This may represent an optional therapeutic choice for COVID-19 to reduce inflammatory reactions and mortality, enabling patients to recover faster. This concise communication aims to provide new potential therapeutic targets capable of mitigating and alleviating SARS-CoV-2 pandemic infection.


Subject(s)
Betacoronavirus , Class I Phosphatidylinositol 3-Kinases/antagonists & inhibitors , Coronavirus Infections/drug therapy , Drug Repositioning/methods , Molecular Targeted Therapy/methods , Pneumonia, Viral/drug therapy , Angiotensin-Converting Enzyme 2 , Angiotensin-Converting Enzyme Inhibitors/therapeutic use , Anti-Inflammatory Agents/therapeutic use , Antirheumatic Agents/therapeutic use , Antiviral Agents/therapeutic use , Butyrophenones/pharmacology , Butyrophenones/therapeutic use , COVID-19 , Class I Phosphatidylinositol 3-Kinases/metabolism , Coronavirus Infections/virology , Humans , Inflammation/drug therapy , Inflammation/immunology , Interleukin-6/antagonists & inhibitors , Interleukin-6/blood , Pandemics , Peptidyl-Dipeptidase A/metabolism , Piperidines/pharmacology , Piperidines/therapeutic use , Pneumonia, Viral/virology , Purines/pharmacology , Purines/therapeutic use , Quinazolinones/pharmacology , Quinazolinones/therapeutic use , SARS-CoV-2 , COVID-19 Drug Treatment
17.
J Exp Clin Cancer Res ; 39(1): 109, 2020 Jun 11.
Article in English | MEDLINE | ID: covidwho-593372

ABSTRACT

If we focus our attention on seven main features of COVID-19 infection (heterogeneity, fragility, lack of effective treatments and vaccines, "miraculous cures", psychological suffering, deprivation, and globalization), we may establish parallelism with the challenges faced in the steep road to the understanding and treatment of neoplastic diseases. How the similarities between these two conditions can help us cope with the emergency effort represented by the management of cancer patients in the COVID-19 era, today and in the future? In a manner similar to the Cancer Moonshot initiative in the United States, we can hypothesize a multinational moonshot project towards the management of cancer patients during COVID-19 pandemic. In particular, we believe that the main road to elaborate meaningful scientific evidence is represented by the collection of all the data on COVID-19 and cancer comorbidity that are and will become available in cancer centers, coupled with the design of large clinical studies. To address this goal, it is essential to identify the entity that can produce this scientific evidences and the potentially most successful research strategy to undertake. The largest Italian organization for cancer research, Alliance Against Cancer (Alleanza Contro il Cancro, ACC), is called to play a scientific leadership in addressing these challenges, which requires the coordination of oncology teams at regional, national, and international levels. To fulfill this commitment, ACC will create a liaison with health government agencies in order to develop "dynamic" indications able to fight such an unpredictable pandemic.


Subject(s)
Coronavirus Infections/epidemiology , Medical Oncology/trends , Neoplasms/epidemiology , Pandemics , Pneumonia, Viral/epidemiology , Betacoronavirus/pathogenicity , COVID-19 , Coronavirus Infections/complications , Coronavirus Infections/pathology , Government Agencies , Humans , Italy/epidemiology , Neoplasms/complications , Neoplasms/pathology , Neoplasms/therapy , Pneumonia, Viral/complications , Pneumonia, Viral/pathology , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL